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Abstract. With elliptic curve cryptography emerging as a serious al-
ternative, the desired level of security can be attained with significantly
smaller key sizes. This makes ECC very attractive for small-footprint de-
vices with limited computational capability, memory and low-bandwidth
network connections. However ECC is still considered to be impractica-
ble for very low-end constrained devices like sensor networks and RFID
tags. We present a stand-alone highly area optimized ECC processor de-
sign for standards compliant binary field curves. We use the fast squarer
implementation to construct an addition chain that allows inversion to be
computed efficiently. Hence, we propose an affine co-ordinate ASIC im-
plementation of the ECC processor using a modified Montgomery point
multiplication method for binary curves ranging from 113−193 bits. An
area between 10k and 18k gates on a 0.35um CMOS process is possi-
ble for the different curves which makes the design very attractive for
enabling ECC in constrained devices.

Key Words: Elliptic curve cryptography (ECC), finite fields, Fermat’s
little theorem.

1 Introduction

Elliptic Curve Cryptography is a relatively new cryptosystem, suggested
independently in 1986 by Miller [14] and Koblitz [11]. At present, ECC
has been commercially accepted, and has also been adopted by many
standardizing bodies such as ANSI [2], IEEE [8], ISO [9], SEC [1] and
NIST [15]. A number of hardware implementations for standardized el-
liptic curve cryptography have been suggested in literature, but very few
of them are aimed for low-end devices. Most implementations focus on
speed and are mostly only suitable for server end applications due to their
huge area requirements. A survey of different ECC implementations can
be found in [3]. An Instruction Set Extension (ISE) based implementa-
tion as shown in [12] provides a simple solution if a processor is already
available on the device. However, there is an equally important need for
a stand-alone ECC engines in small constrained devices used for different



applications like sensor networks and RFID tags. This is normally dic-
tated by the needs for better performance required by a communication
protocol or energy constraints (as a stand-alone engine can be selectively
switched off when not in use).

The different ECC processor implementations that have been sug-
gested for such low-end applications [17, 16, 5] normally use non-standardized
curves and hence are not acceptable for commercial applications. Stan-
dards compliant implementations are however very important for mass ac-
ceptance of a reliable public key infrastructure. The work in [18] presents
an ECC implementation aimed for low-area for both F2m and Fp curves.
The implementations use field sizes in the range of 191 to 256-bits for
certain standardized curves.

In this work we try to find the limits of a low-area stand-alone public-
key processor for standardized ECC curves. Therefore, we tradeoff flex-
ibility in a design for a specific standardized binary field curve which is
quite reasonable for constrained devices. We also note from previous im-
plementations [18], that the memory requirements for storage of points
and temporary variables can contribute substantially (more than 50%) to
the overall size of the ECC processor. Hence we aim for algorithms that
require lesser temporary variables even if it leads to a small computational
drawback.

This paper is organized as follows: In Section 2, we give the proper
choice and tweaks of the different algorithms that allow us to reduce
area without drastically affecting the performance. Section 3 presents the
implementation design for the different arithmetic units, memory unit and
the overall processor design. Finally we analyze the area and performance
in Section 4.

2 Mathematical Background

A detailed introduction to Elliptic Curve Cryptography and its implemen-
tation can be found in [7]. We present here only the algorithms specific
for our implementation. Characteristic two fields F2m are often chosen for
hardware realizations [3] as they are well suited for hardware implemen-
tation due to their “carry-free” arithmetic. This not only simplifies the
architecture but reduces the area due to the lack of carry arithmetic.

An elliptic curve E over F2m is the set of solutions (x, y) which satisfy
the simplified Weierstrass equation:

E : y2 + xy = x3 + ax2 + b (1)



where a, b ∈F2m and b 6= 0, together with the point at infinity O. Due to
the Weil Descent attack [6], m is chosen to be a prime. The point addition
and doubling is then define in the underlying field F2m as follows: Let
P = (x0, y0) ∈ E(F2m) and Q = (x1, y1) ∈ E(F2m), where Q 6= −P .
Then P + Q = (x2, y2), where

x2 = λ2 + λ + x0 + x1 + a

y2 = λ(x0 + x2) + x2 + y0

(2)

and

λ =





y0+y1

x0+x1
if P 6= Q

x1 + y1

x1
if P = Q

(3)

The standard polynomial basis representation is used for our implementa-
tions with the reduction polynomial F (x) = xm+G(x) = xm+

∑m−1
i=0 gix

i

where gi ∈ {0, 1}, for i = 1, ...,m− 1 and g0 = 1.
Let α be a root of F (x), then we represent A ∈ F2m in polynomial basis
as

A(α) =
m−1∑

i=0

aiα
i, ai ∈ F2 (4)

The field arithmetic is implemented as polynomial arithmetic modulo
F (x). Notice that by assumption F (α) = 0 since α is a root of F (x).
Therefore,

αm = −G(α) =
m−1∑

i=0

giα
i (5)

gives an easy way to perform modulo reduction whenever we encounter
powers of α greater than m−1. Throughout the text, we will write A mod
F (α) to mean explicitly the reduction step.

For the implementation of our stand-alone ECC processor, we use
standardized binary fields that provide short-term security and also fields
which are required for high security applications. The four different field
sizes chosen for our implementation range from 113 to 193-bits, and are
recommended in the standards SECG [1] and NIST [15]) (the different
recommended curves and the reduction polynomials are shown in Ta-
ble 1). For some of the constrained devices, short-term keys in 113-bit
fields can provide the adequate security required for the application and
therefore are a good option when area is extremely constrained.



Table 1. Standards recommended field sizes for F2m and reduction polynomial

Standard Field Size (m) Reduction polynomial

SECG 113 F113(x) = x113 + x9 + 1

SECG 131 F131(x) = x131 + x8 + x3 + x2 + 1

NIST, SECG 163 F163(x) = x163 + x7 + x6 + x3 + 1

SECG 193 F193(x) = x193 + x15 + 1

A second reason for the use of the binary fields, is the simplified squaring
structure, which is a central idea used in the algorithms chosen for the
processor design.

2.1 Squaring

Squarings in F2m could be done in two steps, first an expansion with
interleaved 0’s as:

C ≡ A2 mod F (α)

≡ (am−1α
2(m−1) + am−2α

2(m−2) + . . . + a1α
2 + a0) mod F (α)

(6)

and then reducing the double-sized result with the reduction polynomial
using the equivalence in Eq. 5. However in hardware these two steps can
be combined if the reduction polynomial has a small number of non-zero
co-efficients (which is the case with the trinomial and pentanomial reduc-
tion polynomials as in Table 1). Hence, the squaring can be efficiently
implemented to generate the result in one single clock cycle without huge
area requirements. The implementation and the area costs are discussed
in detail in the implementation section.

2.2 Inversion

A common observation is that performing point arithmetic in affine co-
ordinates requires lesser number of temporary variables. This is a very
good argument to help reduce the memory requirements. However, the
disadvantage is that the point operations in the affine co-ordinates re-
quires an inversion operation. Dedicated inversion units using binary Eu-
clidean methods are themselves costly to implement and require extra
storage variables. The other more simpler method to perform inversion is
using the Fermat’s Little Theorem [4]:

A−1 ≡ A2m−2 = (A2m−1−1)2 mod F (x) for A ∈ F2m . (7)



Since 2m− 2 = 21 + 22 + · · ·+ 2m−1, a straightforward way of performing
this exponentiation would be a binary square-and-multiply as A−1 =
A21 ·A22 · · ·A2m−1

, requiring a total of (m− 2) multiplications and (m−
1) squarings. This is an extremely costly due to the large number of
multiplications and hence can considerably slow down an implementation
of an ECC point multiplication. Therefore, projective co-ordinates are
chosen even for low-area implementations [18].

However, Itoh and Tsujii proposed in [10], a construction of an addi-
tion chain such that the exponentiation could be performed in O(logm)
multiplications. Though the algorithm was proposed for optimal normal
basis implementations where squarings are almost for free (cyclic rota-
tions), the area requirements for the squaring structure in our implemen-
tation is within bounds but has the same timing efficiency of 1-clock cycle
as in the normal basis.

We first present here the addition chain construction and discuss the
arithmetic costs for the different fields that we use. Representing m − 1
in binary format, we can write

m− 1 = mq−12q−1 + mq−22q−2 + · · ·+ m12 + m0, mq−1 = 1 (8)

where mi ∈ 0, 1 and q = blog2(m − 1)c + 1, the bit-length of m − 1. We
can then represent m− 1 as a bit vector: [mq−1mq−2 · · ·m1m0]2.
The Itoh-Tsujii method is based on the idea that we can represent

2m−1 − 1 = 2[mq−1mq−2···m1m0]2 − 1

= 2m0(22·[mq−1mq−2···m1]2 − 1) + 2m0 − 1

= 2m0(2[mq−1mq−2···m1]2 − 1) · (2[mq−1mq−2···m1]2 + 1) + m0

(9)

If we define
Ti = (2[mq−1mq−2···mi]2 − 1), (10)

then a recursive equation can be constructed as follows

Ti =





2miTi+1 · (2[mq−1mq−2···mi+1]2 + 1) + mi for 0 ≤ i ≤ (q − 2)

1 i = q − 1

The exponentiation A2m−1−1 = AT0 can then be shown as an recursive
operation:

ATi = A2miTi+1·(2[mq−1mq−2···mi+1]2+1)+mi

= {(ATi+1)2
[mq−1mq−2···mi+1]2 · (ATi+1)}2mi ·Ami for 0 ≤ i ≤ (q − 2)



Thus each recursive step requires [1mq−2 · · ·mi+1]2 squarings + 1 mul-
tiplication, and if mi = 1, an additional squaring and multiplication.
It can be easily shown that the inverse A−1 can then be obtained in
(blog2(m − 1)c + Hw(m − 1) − 1) multiplications and (m − 1) squarings
using this addition chain, where Hw(.) denotes the Hamming weight of
the binary representation.

Algorithm 4, shows the steps involved for calculation of the inverse
for the field size 163 = [10100011]2. As shown, an inverse in F2163 requires
9 field multiplications and 162 squaring, and one extra variable (denoted
as T here) for the temporary storage (which is blocked only during the
inversion process and hence can be used later as a temporary variable in
the point multiplication algorithm). As we already mentioned, a squaring
can be computed in a single clock cycle, and hence the overall cost for
inverse is approximately 10 multiplications (assuming multiplication takes
163 clock cycles). Hence, we take the different approach of using the
affine co-ordinates for our implementation of the ECC processor. Similar
addition chains can be achieved for the other field sizes. We give here only
the costs in terms of the field multiplications and squarings for each in
the Table 2

Table 2. F2m inversion cost using Itoh-Tsuji method

Field size (m) Cost

113 8 F2113 M + 112 F2113 S

131 8 F2131 M + 130 F2131 S

163 9 F2163 M + 162 F2163 S

193 9 F2193 M + 192 F2193 S

2.3 Point multiplication

Montgomery point multiplication is a very efficient algorithm which is
used widely because of the computational savings it gives in projective co-
ordinates. It also has the added advantage that, it computes only over the
x co-ordinates in each iteration and hence requires lesser storage area. It
is based on the fact that a running difference P = (x, y) = P1−P2 can be
used to derive the x co-ordinate of P1 +P2 = (x1, y1)+ (x2, y2) = (x3, y3)



as:

x3 =





x + ( x1
x1+x2

)2 + x1
x1+x2

if P1 6= P2

x2
1 + b

x2
1

if P1 = P2

(11)

In affine co-ordinates, the Montgomery algorithm as shown in Al-
gorithm 2.3, has the disadvantage that it requires two inversions to be
computed in each iteration.

Algorithm 1 Montgomery method for scalar point multiplication in F2m

in affine co-ordinates [13]
Input: P, k, where P = (x, y) ∈ E(F2m), k = [kl−1 · · · k1k0]2 ∈ Z+ and

log2 k < m

Output: Q = k · P , where Q = (x1, y1) ∈ E(F2m)
1: if k = 0 or x = 0 then ReturnQ = (0, 0) and stop.
2: Set x1 ← x, x2 ← x2 + b/x2.
3: for i = l − 2 downto 0 do
4: Set t ← x1

x1+x2
.

5: if ki = 1 then
6: x1 ← x + t2 + t, x2 ← x2

2 + b
x2
2
.

7: else
8: x2 ← x + t2 + t, x1 ← x2

1 + b
x2
1
.

9: end if
10: end for
11: r1 ← x1 + x, r2 ← x2 + x

12: y1 ← r1(r1r2 + x2 + y)/x + y

13: Return (Q = (x1, y1)

The overall cost of the point multiplication using this algorithms is:

]INV. = 2blog2kc+ 2, ]MUL. = 2blog2kc+ 4,

]ADD. = 4blog2kc+ 6, ]SQR. = 2blog2kc+ 2.

We can reduce the inversions required by performing a simultaneous
inversion. For a1, a2 ∈ F2m and non-zero, we first compute the product
A = a1 · a2 mod F (α) and perform a single inversion A−1 mod F (α).
Then the individual inverses are obtained by the two multiplication a−1

1 =



A−1 ·a2 mod F (α) and a−1
2 = A−1 ·a1 mod F (α). Hence, we can trade-off

one inversion for three extra multiplications. From Table 2, we know that
inversions for our implementation are more costly than 3 multiplications
and therefore a simultaneous inversion always gives a better performance.

There is however, the cost for one extra memory location to tem-
porarily save the product A during the computation of the inverse (apart
from the temporary location T ). We use two different options here: a)
we allocate an extra memory location (denoted as R here) to store the
temporary variable A, and b) the product A is computed each time it is
required during the inverse computation.

Based on the discussion on the inverse computation and as seen in
Algorithm 4, the value of A is required at H(m− 1) different steps in the
inverse operation and hence has to be recomputed H(m − 1) − 1 times
(since the computation at the beginning would have to be done anyways).
This is quite low and if area is the main constraint, replacing A with extra
multiplications would not drastically affect performance. Hence, the steps
in the computation of the inverse in Algorithm 4:

T ← B ·A;
are replaced with the computational sequence:

T ← a1 · a2; {T = A}
T ← B · T ;

As we mentioned, simultaneous inversion requires three extra multipli-
cations to trade-off one inversion. However, for the Montgomery point
multiplication algorithm, we can reduce this to just two multiplications
based on the observation that the x co-ordinate of P1−P2 (as in Eq. 11)
can as well be replaced with x co-ordinates of P2 − P1 as shown here:

x3 =





x + ( x2
x1+x2

)2 + x2
x1+x2

if P1 6= P2

x2
1 + b

x2
1

if P1 = P2

(12)

The modified Montgomery algorithm is as shown in Algorithm 2. We
now require one inversion and four multiplications in each iteration. The
total cost of the F2m point multiplication using this algorithms is:

]INV. = blog2kc+ 2, ]MUL. = 4blog2kc+ 4,

]ADD. = 4blog2kc+ 6, ]SQR. = 3blog2kc+ 2.

The algorithm also allows us to compute each iteration without the need
for any extra temporary memory locations (apart from the memory loca-
tion T for inversion, and based on the implementation option the memory
location R)



Algorithm 2 Modified Montgomery method for scalar point multiplica-
tion in F2m in affine co-ordinates
Input: P, k, where P = (x, y) ∈ E(F2m), k = [kl−1 · · · k1k0]2 ∈ Z+ and

log2 k < m

Output: Q = k · P , where Q = (x1, y1) ∈ E(F2m)
1: if k = 0 or x = 0 then ReturnQ = (0, 0) and stop.
2: Set x1 ← x, x2 ← x2 + b/x2.
3: for i = l − 2 downto 0 do
4: Set r0 ← x1 + x2.
5: if ki = 1 then
6: R = 1

(x1+x2)·x2

7: x1 ← x + (x2
2 ·R)2 + (x2

2 ·R), x2 ← x2
2 + b · (r0 ·R)2.

8: else
9: R = 1

(x1+x2)·x1

10: x2 ← x + (x2
1 ·R)2 + (x2

1 ·R), x1 ← x2
1 + b · (r0 ·R)2.

11: end if
12: end for
13: r1 ← x1 + x, r2 ← x2 + x

14: y1 ← r1(r1r2 + x2 + y)/x + y

15: Return (Q = (x1, y1)

3 Implementation Aspects

Based on the mathematical analysis, the main units that are required for
the ECC processor are the adder, multiplier and squaring units in F2m .

3.1 F2m Adder Unit

Addition is a simple bit wise XOR operation implemented using XOR gates.
Therefore, a F2m addition is implemented in our design using m XOR gates
with the output latency of 1 clock cycle.

3.2 F2m Multiplier Unit

Multipliers are normally the next biggest component in an ECC proces-
sor and therefore the appropriate multiplier design needs to be chosen



based on the implementation goals (speed or area). When implementing
for constrained devices, which requires extreme savings in area, bit-serial
multipliers are the most efficient that reduce area and maintain good per-
formance. We implement the Most-Significant Bit-serial (MSB) multiplier
(Algorithm 3).

Algorithm 3 Shift-and-Add Most Significant Bit F2m multiplication

Input: A =
∑m−1

i=0 aiα
i, B =

∑m−1
i=0 biα

i where ai, bi ∈ F2.
Output: C ≡ A ·B mod F (α) =

∑m−1
i=0 ciα

i where ci ∈ F2.
1: C ← 0
2: for i = m− 1 downto 0 do
3: C ← bi · (

∑m−1
i=0 aiα

i) + (
∑m−1

i=0 ciα
i) · α mod F (α)

4: end for
5: Return (C)

The structure of the 163-bit MSB multiplier is as shown Fig 1. Here,

A

C =A.B mod F(x)

c0c1c2c3c6c7
c161c162

bi

163

163

a162 a161 a7 a3a6 a2 a1 a0

c162 c161 c7 c3c6 c2 c1 c0

Fig. 1. F2163 Most Significant Bit-serial (MSB) Multiplier circuit

the operand A can be enabled onto the data-bus A of the multiplier,
directly from the memory register location. The individual bits of bi can
be sent from a memory location by implementing the memory registers
as a cyclic shift-register (with the output at the most-significant bit). The
value of the operand register remains unchanged after the completion of
the multiplication as it makes one complete rotation.



The reduction within the multiplier is now performed on the accu-
mulating result ci, as in step 4 in Algorithm 3. The taps that are feeded
back to ci, are based on the reduction polynomial. In Fig 1, which shows
the implementation for F163(x) reduction polynomial, the taps XOR the
result of c162 to c7, c6 c3 and c0.

The complexity of the multiplier is n AND + (n+t−1) XOR gates and n
FF where t = 3 for a trinomial reduction polynomial (F113(x) and F193(x))
and t = 5 for a pentanomial reduction polynomial (F131(x) and F163(x)).
The latency for the multiplier output is n clock cycles. The maximum
critical path is 2∆XOR (independent of n) where, ∆XOR represents the
delay in an XOR gate.

3.3 F2m Squarer Unit

As mentioned previously, we can implement a very fast squarer with a
latency of a single clock cycle. Squaring involves first the expansion by
interleaving with 0’s, which in hardware is just an interleaving of 0 bit
valued lines on to the bus to expand it to 2n bits. The reduction of this
polynomial is inexpensive, first, due to the fact that reduction polynomial
used is a trinomial or pentanomial, and secondly, the polynomial being
reduced is sparse with no reduction required for bn/2c of the higher order
bits (since they have been set to 0’s). The squarer is implemented as a
hard wired XOR circuit as shown in Fig. 2. The XOR requirements and
the maximum critical path (assuming an XOR tree implementation) for
the four reduction polynomials used are given in the Table 3.

Table 3. F2m Squaring unit requirements

Reduction Polynomial XOR gates Critical Path

x113 + x9 + 1 56 XOR 2 ∆XOR

x131 + x8 + x3 + x2 + 1 205 XOR 3 ∆XOR

x163 + x7 + x6 + x3 + 1 246 XOR 3 ∆XOR

x193 + x15 + 1 96 XOR 2 ∆XOR

3.4 ECC Processor design

The three units: F2m addition (ADD ), F2m multiplication (MUL ), and F2m

squaring (SQR ) are closely interconnected inside a single Arithmetic Unit
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Fig. 2. F2163 squaring circuit

(as shown in Fig. 3) sharing the common input data-bus A. The appro-
priate result is selected at the output data-bus C by the Controller signal
Csel. The adder needs an additional data-bus B for the second operand
and the multiplier requires a single bit bi signal for the multiplicand. The
operands are stored in the Memory as registers (some of them as cyclic
registers) with the output being selected for A, B and bi using multi-
plexors with control signals (Asel, Bsel and bi sel) from the Controller. All
the operand register are connected in parallel to the data-bus C, with
the appropriate register being loaded based on the Controller load signal
Cld reg.

Inversion is done as mentioned using the Itoh-Tsuji method and thus
requires no additional hardware apart from the multiplier and squarer
unit with some additional control circuitry to enable the proper variables
to the appropriate unit. We define a single INV instruction which performs
the required sequence of steps. Since the inversion can be computed with
(blog2(m − 1)c + Hw(m − 1) − 1) multiplications and (m − 1) squaring,
the latency of the inversion in clock cycles is:
(blog2(m−1)c+Hw(m−1)−1) ·m+(m−1) = (blog2(m−1)c+Hw(m−
1)) ·m− 1

The instruction set of the processor is as shown in Table 4. The Con-
troller executes the required instructions by enabling the appropriate con-
trol signals to the Arithmetic Unit and Memory. The scalar k is stored
within the Controller as a shift register. The input operands x,y, and k
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Fig. 3. Area optimized F2n ECC processor

are loaded externally on an n bit data-bus using the addr signal. The
final results x1 and y1 is similarly read out using the addr signal.

Table 4. Controller Commands of ECC Processor over F2m

Command Action

LOAD [addrA] Load data into the register [A] (in parallel)

READ [addrA] Read data out of the register [A] (in parallel)

MUL [addrA], [addrB ], [addrC ] Perform F2m multiplication on [A] (loaded in parallel),

[B] (loaded in serially) and stores the result in [C] (in parallel)

ADD [addrA] [addrB ] [addrC ] Perform F2m addition on [A], [B] (both loaded in parallel)

and stores the result in [C] (in parallel)

SQR [addrA] [addrC ] Perform F2m squaring on [A] (loaded in parallel)

and stores the result in [C]

INV [addrA] [addrC ] Perform F2m inversion on [A] (loaded in parallel)

and stores the result in [C] (in parallel)

The next important aspect of the design was to find the optimum
sequence of computation steps such that the least number of temporary



memory is required. Another requirement during this optimization pro-
cess, was to make sure that not all memory variables be connected to
the data-bus B and bi signal. This reduces the area requirement for the
selection logic that is implemented with multiplexors and additionally,
the fact that memory variables which are implemented without a cyclic
shift requires much lesser area.

We use the modified Algorithm 2 to construct the sequence of instruc-
tions as shown in Algorithm 5. As mentioned before we can get rid of the
extra register R by performing additional multiplications and hence Fig. 3
is shown without this register. The processor requires only 6 memory lo-
cations, the inputs x, y , the outputs x1, x2, and registers x2 and T . No
other extra temporary memory registers are needed during the computa-
tion. Only the registers x1, x2 and T are connected to the bi signal and
hence the others are implemented as simple registers with no shift opera-
tion. Similarly, only the register x1 and x2 are connected to the data-bus
B. Data-bus A is connected to all the memory locations.

4 Performance Analysis

Based on the implementation described in the last section, we build two
ECC processors: a) with the extra register R (not a cyclic shift regis-
ter) and hence fewer multiplications and b) without the extra register
R but smaller area. The implementations were synthesized for a cus-
tom ASIC design using AMI Semiconductor 0.35µm CMOS technology
using the Synopsys Design Compiler tools. Timing measurements were
done with Modelsim simulator against test vectors generated with a Java
based model.

The area requirements (in terms of equivalent gate counts) for individ-
ual units of both the processor implementations is shown in the Table 5.
The Controller area differs only slightly between the implementations and
we give here only for the case without the register R. The area require-
ments for the Memory is given in Table 6 (without the extra R register)
and Table 7 (with the extra R register). As can be seen, memory require-
ments are more than 50% of the whole design. The designs have a total
area ranging from 10k equivalent gates for 113-bit field for short-term
security, to 18k for 193-bit field for high security applications.
The latency of the ECC processor in clock cycles for a single scalar mul-
tiplication is shown in Tables 6 and 7. Since the structure is extremely
simple, it can be clocked at very high frequencies, but we present here
the absolute timings at 13.56 Mhz which is normally the frequency used



Table 5. F2m ECC processor area (in equivalent gates)

Field size MULT SQR ADD Controller

113 1210.58 188.38 226.00 1567.51

131 1402.46 406.00 262.00 1833.23

163 1743.58 502.00 326.00 2335.61

193 2068.38 321.98 386.00 2957.83

in RFID applications. We also make a comparison of the efficiency be-
tween the two ECC processor using the area-time product (normalized
to the implementation with register R) and shown in Table 6. We see
that the ECC processor with the extra register has a better efficiency,
and so should be the preferred implementation if a slight area increase is
acceptable.

Table 6. F2m ECC processor performance @13.56 Mhz without extra register R

Field size Memory Total Area Cycles Time (ms) Area-Time

113 6686.43 10112.85 195159 14.4 1.07

131 7747.17 11969.93 244192 18.0 0.99

163 9632.93 15094.31 430654 31.8 1.06

193 11400.83 17723.12 564919 41.7 1.00

Table 7. F2m ECC processor performance @13.56 Mhz with extra register R

Field size Memory Total Area Cycles Time (ms)

113 7439.01 10894.34 169169 12.5

131 8619.63 12883.51 226769 16.8

163 10718.49 16206.67 376864 27.9

193 12686.21 19048.22 527284 38.8

Comparing the results presented here to the work in [18] (the only
standardized curve implementation for constrained devices), the clock
cycles for our 193-bit size implementation is 19% more than for the 191-
bit Montgomery projective co-ordinate algorithm, which was expected
because we trade-off performance slightly to save on area. However, the



implementation is 4.4 times faster than the affine implementation pre-
sented. The area requirements of 18k gates for our 193-bit implementation
is much smaller (22%) than the 23k gates for the 191-bit field mentioned
in [18] (though the design is slightly more versatile due the dual field mul-
tipliers used). However, as mentioned before, not all constrained devices
like RFID require such high security. We can choose smaller key sizes
depending on the security requirements of the application for which the
RFID is used. This allows for a much smaller area requirements as men-
tioned in this work. However power requirements are also an important
consideration for the feasibility of the a cryptographic engine on an RFID
device and we would be studying them in our future work.

5 Summary

We showed here an extremely small area implementation of an ECC pro-
cessor in the affine co-ordinates. Though affine co-ordinate implementa-
tions are not normally favored for constrained devices due to the need
for an inverter, we show through the use of an addition chain and fast
squarer, they are equally good for use in low-area implementations. Fur-
ther savings are possible at the point arithmetic level by tweaking the
algorithm to save on temporary storage variables. The proposed ECC
processor is also secure against timing attacks due to the regular struc-
ture of the instructions used independent of the scalar. Hence, we show
that an ECC processor implementation for four different standardized bi-
nary fields ranging from 113 to 193 bits with area requirements ranging
between 10k and 18k gates, which makes the design very attractive for
enabling ECC in constrained devices. Thus to the answer ”Are standards
compliant Elliptic Curve Cryptosystems feasible on RFID?”, it depends
on the security requirements of the application and could as well be fea-
sible for lower security applications and within reach for high security
applications in terms of gate count. Accurate power requirements of the
processor would be the major factor that would affect the final decision
and would require more research in the future.
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Appendix

Algorithm 4 Inversion with Itoh-Tsuji method over F2163

Input: A ∈ F2163 and irreducible polynomial F (t).

Output: B ≡ A−1 mod F (t) = A2m−2 where m = 163.

1: B ← A2 = A(10)2

2: T ← B ·A = A(11)2

3: B ← T 22
= A(1100)2

4: T ← B · T = A(1111)2

5: B ← T 2 = A(11110)2

6: T ← B ·A = A(11111)2

7: B ← T 25
= A(1111100000)2

8: T ← B · T = A

(1 · · · 1| {z }
10

)2

9: B ← T 210
= A

(1 · · · 1| {z }
10

0 · · · 0| {z }
10

)2

10: T ← B · T = A

(1 · · · 1| {z }
20

)2

11: B ← T 220
= A

(1 · · · 1| {z }
20

0 · · · 0| {z }
20

)2

12: T ← B · T = A

(1 · · · 1| {z }
40

)2

13: B ← T 240
= A

(1 · · · 1| {z }
40

0 · · · 0| {z }
40

)2

14: T ← B · T = A

(1 · · · 1| {z }
80

)2

15: B ← T 2 = A

(1 · · · 1| {z }
80

0)2

16: T ← B ·A = A

(1 · · · 1| {z }
81

)2

17: B ← T 281
= A

(1 · · · 1| {z }
81

0 · · · 0| {z }
81

)2

18: T ← B · T = A

(1 · · · 1| {z }
162

)2

19: B ← T 2 = A

(1 · · · 1| {z }
162

0)2

20: Return B

{ 1 SQR }

{ 1 MUL }

{ 2 SQR }

{ 1 MUL }

{ 1 SQR }

{ 1 MUL }

{ 5 SQR }

{ 1 MUL }

{ 10 SQR }

{ 1 MUL }

{ 20 SQR }

{ 1 MUL }

{ 40 SQR }

{ 1 MUL }

{ 1 SQR }

{ 1 MUL }

{ 81 SQR }

{ 1 MUL }

{ 1 SQR }



Algorithm 5 Instruction sequence for the Modified Montgomery method
for scalar point multiplication in F2m in affine co-ordinates
Input: P, k, where P = (x, y) ∈ E(F2m), k = [kl−1 · · · k1k0]2 ∈ Z+ and

log2 k < m

Output: Q = k · P , where Q = (x1, y1) ∈ E(F2m)
1: if k = 0 or x = 0 then ReturnQ = (0, 0) and stop.
2: x1 ← x,
3: y1 ← SQR (x)
4: x2 ← INV (y1).
5: x2 ← MUL (b, x2).
6: x2 ← ADD (y1, x2).
7: for i = l − 2 downto 0 do
8: if ki = 1 then

9: x1 ← ADD (x1, x2)
10: R ← MUL (x1, x2)
11: y1 ← INV (R)
12: x1 ← MUL (y1, x1)
13: x2 ← SQR (x2)
14: y1 ← MUL (y1, x2)
15: x1 ← SQR (x1)
16: x1 ← MUL (b , x1)
17: x2 ← ADD (x1, x2)
18: x1 ← SQR (y1)
19: x1 ← ADD (y1, x1)
20: x1 ← ADD (x, x1)

21: else
22: x2 ← ADD (x1, x2)
23: R ← MUL (x1, x2)
24: y1 ← INV (R)
25: x2 ← MUL (y1, x2)
26: x1 ← SQR (x1)
27: y1 ← MUL (y1, x1)
28: x2 ← SQR (x2)
29: x2 ← MUL (b , x2)
30: x1 ← ADD (x1, x2)
31: x2 ← SQR (y1)
32: x2 ← ADD (y1, x2)
33: x2 ← ADD (x, x2)

34: end if
35: end for
36: y1 ← ADD (x, x1)
37: x2 ← ADD (x, x2)
38: x2 ← MUL (y1, x2)
39: T ← SQR (x)
40: x2 ← ADD (T , x2)
41: x2 ← ADD (y , x2)
42: x2 ← MUL (y1, x2)
43: y1 ← INV (x)
44: x2 ← MUL (y1, x2)
45: y1 ← ADD (y, x2)
46: Return (Q = (x1, y1)


